Applying differentiable simulation for policy optimization in
robotics

Policy optimization through differentiable simulation in ADD [8] and Nvidia Warp

Challenges and Opportunities in Robotics Reinforcement Learning

Policy gradient algorithms are a cornerstone in robotics reinforcement learning (RL) for
continuous control policy learning. However, the inherent complexity of robotic systems
often results in prolonged computation times and impedes effective exploration. To
address these challenges, two main strategies have emerged:

1. Leveraging Differentiable Simulators: Enhances sample efficiency [1, 2]
2. Utilizing Parallelizable Simulation: Offers significant speed improvements [3, 4]

Some advanced methods [5, 7] combine these approaches, aiming to harness the
benefits of both. However, challenges persist:

e Training can be hampered by local minima and gradient instability
(exploding/vanishing gradients)

e Need for specialized techniques to address these issues in contact-rich
loco-manipulation environments

Critical Questions for Future Research

1. Necessity of Gradient Information:
In an era of affordable and easily parallelizable simulations, is gradient
information from simulations still crucial or beneficial for robotics RL?

2. Simulation Fidelity and Real-World Transfer:
Are the assumptions made in differentiable simulators sufficiently realistic and
transferable to real-world robotic applications?


https://github.com/NVIDIA/warp

Addressing these questions is vital for advancing the field of robotics RL and bridging
the gap between simulation and real-world performance.

Possible roadmap:

1. Gradient-Based Method Implementation: Develop a method that leverages
gradient information and has the potential for parallelization. Compare its
performance against reinforcement learning (RL) baselines.

2. Algorithm Customization: Adapt the algorithm to utilize data from differentiable
simulations, incorporating techniques to minimize variance in policy
optimization.

3. Computational Trade-Off Analysis: Investigate the computational trade-offs
associated with the proposed algorithm.

4. Sim-to-Real Transfer Testing: Evaluate the transferability of the optimized RL
policies from simulation to real-world hardware.
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